Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 425
Filtrar
1.
Sci Data ; 11(1): 361, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600091

RESUMO

Species assemblage composition of marine microfossils offers the possibility to investigate ecological and climatological change on time scales inaccessible using conventional observations. Planktonic foraminifera - calcareous zooplankton - have an excellent fossil record and are used extensively in palaeoecology and palaeoceanography. During the Last Glacial Maximum (LGM; 19,000 - 23,000 years ago), the climate was in a radically different state. This period is therefore a key target to investigate climate and biodiversity under different conditions than today. Studying LGM climate and ecosystems indeed has a long history, yet the most recent global synthesis of planktonic foraminifera assemblage composition is now nearly two decades old. Here we present the ForCenS-LGM dataset with 2,365 species assemblage samples collected using standardised methods and with harmonised taxonomy. The data originate from marine sediments from 664 sites and present a more than 50% increase in coverage compared to previous work. The taxonomy is compatible with the most recent global core top dataset, enabling direct investigation of temporal changes in foraminifera biogeography and facilitating seawater temperature reconstructions.


Assuntos
Foraminíferos , Fósseis , Zooplâncton , Animais , Biodiversidade , Ecossistema
2.
Adv Pharm Bull ; 14(1): 241-252, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38585463

RESUMO

Purpose: N-methyl-D-aspartate (NMDA) receptors that are expressed by T-cells modulate T-cell proliferation, cytotoxicity and cell migration toward chemokines. Several studies have shown an anti-inflammatory effect of NMDA receptor antagonists. This study compares the effect of the noncompetitive low-affinity NMDA receptor antagonist N-(2-adamantyl)-hexamethyleneimine hydrochloride (hemantane) in a topical formulation (gel) with the cyclooxygenase (COX) inhibitor diclofenac in a topical formulation (gel) in rats with arthritis induced by Freund's Complete Adjuvant (FCA). Methods: On day 14 after an FCA injection into the left hind paw, rats with contralateral hind paw edema were selected for further investigation (29/65). They were treated with 5% hemantane gel or 1% diclofenac gel applied locally to hind paws daily for 2 weeks starting 14 days after the FCA injection. Rats with arthritis were examined hind paw edema, hyperalgesia, and motor deficits; their body weight and hematological parameters were recorded. The rats were euthanized on day 28, followed by histological examination of the ankle joint (HE stain). Results: Rats with arthritis exhibited hind paw inflammation and hyperalgesia, motor deficits, changes of hematological parameters, reduced weight gain and spleen hypertrophy. Histological examination of the ankle joint revealed degenerative-dystrophic lesions of the cartilaginous tissue, proliferative inflammation of the synovium, edema and lymphocytic/macrophage infiltration of periarticular tissues. Hemantane gel reduced hind paw edema, pain, motor deficits and histological signs of inflammation; its effect was comparable to diclofenac gel. Conclusion: Hemantane gel alleviates FCA-induced arthritis in rats, and its effect is comparable to diclofenac gel.

3.
Mol Cancer ; 23(1): 56, 2024 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-38491381

RESUMO

One of the major hurdles that has hindered the success of chimeric antigen receptor (CAR) T cell therapies against solid tumors is on-target off-tumor (OTOT) toxicity due to sharing of the same epitopes on normal tissues. To elevate the safety profile of CAR-T cells, an affinity/avidity fine-tuned CAR was designed enabling CAR-T cell activation only in the presence of a highly expressed tumor associated antigen (TAA) but not when recognizing the same antigen at a physiological level on healthy cells. Using direct stochastic optical reconstruction microscopy (dSTORM) which provides single-molecule resolution, and flow cytometry, we identified high carbonic anhydrase IX (CAIX) density on clear cell renal cell carcinoma (ccRCC) patient samples and low-density expression on healthy bile duct tissues. A Tet-On doxycycline-inducible CAIX expressing cell line was established to mimic various CAIX densities, providing coverage from CAIX-high skrc-59 tumor cells to CAIX-low MMNK-1 cholangiocytes. Assessing the killing of CAR-T cells, we demonstrated that low-affinity/high-avidity fine-tuned G9 CAR-T has a wider therapeutic window compared to high-affinity/high-avidity G250 that was used in the first anti-CAIX CAR-T clinical trial but displayed serious OTOT effects. To assess the therapeutic effect of G9 on patient samples, we generated ccRCC patient derived organotypic tumor spheroid (PDOTS) ex vivo cultures and demonstrated that G9 CAR-T cells exhibited superior efficacy, migration and cytokine release in these miniature tumors. Moreover, in an RCC orthotopic mouse model, G9 CAR-T cells showed enhanced tumor control compared to G250. In summary, G9 has successfully mitigated OTOT side effects and in doing so has made CAIX a druggable immunotherapeutic target.


Assuntos
Anidrases Carbônicas , Carcinoma de Células Renais , Neoplasias Renais , Receptores de Antígenos Quiméricos , Animais , Camundongos , Humanos , Anidrase Carbônica IX/genética , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/patologia , Receptores de Antígenos Quiméricos/genética , Anidrases Carbônicas/metabolismo , Anidrases Carbônicas/uso terapêutico , Antígenos de Neoplasias , Anticorpos , Linfócitos T/metabolismo
4.
ACS Appl Mater Interfaces ; 16(13): 15657-15686, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38518221

RESUMO

The adhesion of sticky liquid foods to a contacting surface can cause many technical challenges. The food manufacturing sector is confronted with many critical issues that can be overcome with long-lasting and highly nonwettable coatings. Nanoengineered biomimetic surfaces with distinct wettability and tunable interfaces have elicited increasing interest for their potential use in addressing a broad variety of scientific and technological applications, such as antifogging, anti-icing, antifouling, antiadhesion, and anticorrosion. Although a large number of nature-inspired surfaces have emerged, food-safe nonwetted surfaces are still in their infancy, and numerous structural design aspects remain unexplored. This Review summarizes the latest scientific research regarding the key principles, fabrication methods, and applications of three important categories of nonwettable surfaces: superhydrophobic, liquid-infused slippery, and re-entrant structured surfaces. The Review is particularly focused on new insights into the antiwetting mechanisms of these nanopatterned structures and discovering efficient platform methodologies to guide their rational design when in contact with food materials. A detailed description of the current opportunities, challenges, and future scale-up possibilities of these nanoengineered surfaces in the food industry is also provided.

5.
Acta Biomater ; 177: 20-36, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38342192

RESUMO

While there has been significant research conducted on bacterial colonization on implant materials, with a focus on developing surface modifications to prevent the formation of bacterial biofilms, the study of Candida albicans biofilms on implantable materials is still in its infancy, despite its growing relevance in implant-associated infections. C. albicans fungal infections represent a significant clinical concern due to their severity and associated high fatality rate. Pathogenic yeasts account for an increasing proportion of implant-associated infections, since Candida spp. readily form biofilms on medical and dental device surfaces. In addition, these biofilms are highly antifungal-resistant, making it crucial to explore alternative solutions for the prevention of Candida implant-associated infections. One promising approach is to modify the surface properties of the implant, such as the wettability and topography of these substrata, to prevent the initial Candida attachment to the surface. This review summarizes recent research on the effects of surface wettability, roughness, and architecture on Candida spp. attachment to implantable materials. The nanofabrication of material surfaces are highlighted as a potential method for the prevention of Candida spp. attachment and biofilm formation on medical implant materials. Understanding the mechanisms by which Candida spp. attach to surfaces will allow such surfaces to be designed such that the incidence and severity of Candida infections in patients can be significantly reduced. Most importantly, this approach could also substantially reduce the need to use antifungals for the prevention and treatment of these infections, thereby playing a crucial role in minimizing the possibility contributing to instances of antimicrobial resistance. STATEMENT OF SIGNIFICANCE: In this review we provide a systematic analysis of the role that surface characteristics, such as wettability, roughness, topography and architecture, play on the extent of C. albicans cells attachment that will occur on biomaterial surfaces. We show that exploiting bioinspired surfaces could significantly contribute to the prevention of antimicrobial resistance to antifungal and chemical-based preventive measures. By reducing the attachment and growth of C. albicans cells using surface structure approaches, we can decrease the need for antifungals, which are conventionally used to treat such infections.


Assuntos
Antifúngicos , Candida albicans , Humanos , Antifúngicos/farmacologia , Antifúngicos/química , Biofilmes , Propriedades de Superfície , Materiais Biocompatíveis/química
6.
Isotopes Environ Health Stud ; 60(2): 162-173, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38353149

RESUMO

The extraction of lipids by the Folch method from the muscles of all the fish studied led to statistically significant differences in the values of δ15N. At the same time, lipid extraction led to a statistically significant increase in δ13C in pike and roach, and to a statistically insignificant decrease in δ13C in perch and bream. Thus, lipid extraction cannot serve as a universal method of sample preparation for the analysis of the isotopic composition of carbon (13C/12C) and nitrogen (15N/14N) in fish muscles. The differences between the δ13C values in the samples before and after lipid extraction were statistically investigated by different models. It is shown that mathematical correction method models can be used, but the results are depending on the fish types.


Assuntos
Carbono , Nitrogênio , Animais , Carbono/análise , Nitrogênio/análise , Isótopos de Carbono/análise , Isótopos de Nitrogênio/análise , Peixes , Músculos/química , Lipídeos/análise
7.
Adv Mater ; 36(19): e2312474, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38252677

RESUMO

Nanocarbons are emerging at the forefront of nanoscience, with diverse carbon nanoforms emerging over the past two decades. Early cancer diagnosis and therapy, driven by advanced chemistry techniques, play a pivotal role in mitigating mortality rates associated with cancer. Nanocarbons, with an attractive combination of well-defined architectures, biocompatibility, and nanoscale dimension, offer an incredibly versatile platform for cancer imaging and therapy. This paper aims to review the underlying principles regarding the controllable synthesis, fluorescence origins, cellular toxicity, and surface functionalization routes of several classes of nanocarbons: carbon nanodots, nanodiamonds, carbon nanoonions, and carbon nanohorns. This review also highlights recent breakthroughs regarding the green synthesis of different nanocarbons from renewable sources. It also presents a comprehensive and unified overview of the latest cancer-related applications of nanocarbons and how they can be designed to interface with biological systems and work as cancer diagnostics and therapeutic tools. The commercial status for large-scale manufacturing of nanocarbons is also presented. Finally, it proposes future research opportunities aimed at engendering modifiable and high-performance nanocarbons for emerging applications across medical industries. This work is envisioned as a cornerstone to guide interdisciplinary teams in crafting fluorescent nanocarbons with tailored attributes that can revolutionize cancer diagnostics and therapy.


Assuntos
Corantes Fluorescentes , Neoplasias , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/diagnóstico , Corantes Fluorescentes/química , Animais , Imagem Óptica , Nanopartículas/química , Carbono/química
8.
Nano Lett ; 24(4): 1145-1152, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38194429

RESUMO

We present a novel technique of genetic transformation of bacterial cells mediated by high frequency electromagnetic energy (HF EME). Plasmid DNA, pGLO (5.4 kb), was successfully transformed into Escherichia coli JM109 cells after exposure to 18 GHz irradiation at a power density between 5.6 and 30 kW m-2 for 180 s at temperatures ranging from 30 to 40 °C. Transformed bacteria were identified by the expression of green fluorescent protein (GFP) using confocal scanning microscopy (CLSM) and flow cytometry (FC). Approximately 90.7% of HF EME treated viable E. coli cells exhibited uptake of the pGLO plasmid. The interaction of plasmid DNA with bacteria leading to transformation was confirmed by using cryogenic transmission electron microscopy (cryo-TEM). HF EME-induced plasmid DNA transformation was shown to be unique, highly efficient, and cost-effective. HF EME-induced genetic transformation is performed under physiologically friendly conditions in contrast to existing techniques that generate higher temperatures, leading to altered cellular integrity. This technique allows safe delivery of genetic material into bacterial cells, thus providing excellent prospects for applications in microbiome therapeutics and synthetic biology.


Assuntos
Escherichia coli , Transformação Bacteriana , Plasmídeos/genética , DNA/metabolismo , Bactérias/genética , Radiação Eletromagnética
9.
J Thorac Oncol ; 19(5): 732-748, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38154514

RESUMO

INTRODUCTION: ERBB2 amplification in lung cancer remains poorly characterized. HER2 (encoded by ERBB2) is a transmembrane tyrosine kinase capable of ligand-independent dimerization and signaling when overexpressed, and a common cause of HER2 overexpression is ERBB2 amplification. Here, we evaluated the clinicopathologic and genomic characteristics of ERBB2-amplified NSCLC and explored a HER2 antibody-drug conjugate (ADC) therapeutic strategy. METHODS: Our institutional next-generation DNA sequencing data (OncoPanel) from 5769 NSCLC samples (5075 patients) were queried for cases having high-level ERBB2 amplification (≥6 copies). Clinical and demographic characteristics were extracted from the electronic medical records. Efficacy of the pan-ERBB inhibitor afatinib or HER2 ADCs (trastuzumab deruxtecan and trastuzumab emtansine) was evaluated in NSCLC preclinical models and patients with ERBB2 amplification. RESULTS: High-level ERBB2 amplification was identified in 0.9% of lung adenocarcinomas and reliably predicted overexpression of HER2. ERBB2 amplification events are detected in two distinct clinicopathologic and genomic subsets of NSCLC: as the sole mitogenic driver in tumors arising in patients with a smoking history or as a concomitant alteration with other mitogenic drivers in patients with a light or never smoking history. We further reveal that trastuzumab deruxtecan is effective therapy in in vitro and in vivo preclinical models of NSCLC harboring ERBB2 amplification and report two cases of clinical activity of an anti-HER2 ADC in patients who acquired ERBB2 amplification after previous targeted therapy. CONCLUSIONS: High-level ERBB2 amplification reliably predicts HER2 overexpression in patients with NSCLC, and HER2 ADC is effective therapy in this population.


Assuntos
Camptotecina/análogos & derivados , Carcinoma Pulmonar de Células não Pequenas , Amplificação de Genes , Neoplasias Pulmonares , Receptor ErbB-2 , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Masculino , Pessoa de Meia-Idade , Animais , Imunoconjugados/uso terapêutico , Imunoconjugados/farmacologia , Idoso , Camundongos , Trastuzumab/uso terapêutico , Trastuzumab/farmacologia , Prevalência , Afatinib/uso terapêutico , Afatinib/farmacologia , Ado-Trastuzumab Emtansina/uso terapêutico , Ado-Trastuzumab Emtansina/farmacologia
10.
ACS Nano ; 18(2): 1404-1419, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38127731

RESUMO

This paper presents a comprehensive experimental and theoretical investigation into the antiviral properties of nanostructured surfaces and explains the underlying virucidal mechanism. We used reactive ion etching to fabricate silicon (Si) surfaces featuring an array of sharp nanospikes with an approximate tip diameter of 2 nm and a height of 290 nm. The nanospike surfaces exhibited a 1.5 log reduction in infectivity of human parainfluenza virus type 3 (hPIV-3) after 6 h, a substantially enhanced efficiency, compared to that of smooth Si. Theoretical modeling of the virus-nanospike interactions determined the virucidal action of the nanostructured substrata to be associated with the ability of the sharp nanofeatures to effectively penetrate the viral envelope, resulting in the loss of viral infectivity. Our research highlights the significance of the potential application of nanostructured surfaces in combating the spread of viruses and bacteria. Notably, our study provides valuable insights into the design and optimization of antiviral surfaces with a particular emphasis on the crucial role played by sharp nanofeatures in maximizing their effectiveness.


Assuntos
Nanoestruturas , Infecções por Paramyxoviridae , Humanos , Silício , Vírus da Parainfluenza 3 Humana , Antivirais
11.
Blood Adv ; 7(24): 7445-7456, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38091008

RESUMO

Somatic UBA1 mutations in hematopoietic cells are a hallmark of Vacuoles, E1 enzyme, X-linked, Autoinflammatory, Somatic (VEXAS) syndrome, which is a late-onset inflammatory disease associated with bone marrow failure and high mortality. The majority of UBA1 mutations in VEXAS syndrome comprise hemizygous mutations affecting methionine-41 (M41), leading to the expression of UBA1M41T, UBA1M41V, or UBA1M41L and globally reduced protein polyubiquitination. Here, we used CRISPR-Cas9 to engineer isogenic 32D mouse myeloid cell lines expressing hemizygous Uba1WT or Uba1M41L from the endogenous locus. Consistent with prior analyses of patients with VEXAS syndrome samples, hemizygous Uba1M41L expression was associated with loss of the UBA1b protein isoform, gain of the UBA1c protein isoform, reduced polyubiquitination, abnormal cytoplasmic vacuoles, and increased production of interleukin-1ß and inflammatory chemokines. Vacuoles in Uba1M41L cells contained a variety of endolysosomal membranes, including small vesicles, multivesicular bodies, and multilamellar lysosomes. Uba1M41L cells were more sensitive to the UBA1 inhibitor TAK243. TAK243 treatment promoted apoptosis in Uba1M41L cells and led to preferential loss of Uba1M41L cells in competition assays with Uba1WT cells. Knock-in of a TAK243-binding mutation, Uba1A580S, conferred TAK243 resistance. In addition, overexpression of catalytically active UBA1b in Uba1M41L cells restored polyubiquitination and increased TAK243 resistance. Altogether, these data indicate that loss of UBA1b underlies a key biochemical phenotype associated with VEXAS syndrome and renders cells with reduced UBA1 activity vulnerable to targeted UBA1 inhibition. Our Uba1M41L knock-in cell line is a useful model of VEXAS syndrome that will aid in the study of disease pathogenesis and the development of effective therapies.


Assuntos
Células Mieloides , Células Progenitoras Mieloides , Animais , Camundongos , Humanos , Lisossomos , Isoformas de Proteínas
12.
Int J Mol Sci ; 24(24)2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38139159

RESUMO

The quality of soft tissue defect regeneration after dental surgeries largely determines their final success. Collagen membranes have been proposed for the healing of such defects, but in some cases, they do not guarantee a sufficient volume of the regenerated tissue and vascularization. For this purpose, lactoferrin, a protein with natural pro-regenerative, anti-inflammatory, and pro-angiogenic activity, can be added to collagen. In this article, we used a semipermeable barrier-assisted electrophoretic deposition (SBA-EPD) method for the production of collagen-lactoferrin membranes. The membrane structure was studied by SEM, and its mechanical properties were shown. The lactoferrin release kinetics were shown by ELISA within 75 h. When tested in vitro, we demonstrated that the collagen-lactoferrin membranes significantly increased the proliferation of keratinocytes (HaCaT) and fibroblasts (977hTERT) compared to blank collagen membranes. In vivo, on the vestibuloplasty and free gingival graft harvesting models, we showed that collagen-lactoferrin membranes decreased the wound inflammation and increased the healing rates and regeneration quality. In some parameters, collagen-lactoferrin membranes outperformed not only blank collagen membranes, but also the commercial membrane Mucograft®. Thus, we proved that collagen-lactoferrin membranes produced by the SBA-EPD method may be a valuable alternative to commercially used membranes for soft tissue regeneration in the oral cavity.


Assuntos
Lactoferrina , Membranas Artificiais , Colágeno/química , Cicatrização
13.
Stem Cell Res ; 73: 103247, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37976651

RESUMO

Ataxia-Telangiectasia (A-T) is an autosomal recessive multi-system disorder caused by mutations in the ataxia-telangiectasia mutated (ATM) gene, resulting, among other symptoms, in neurological dysfunction. ATM is known to be a master controller of signal transduction for DNA damage response, with additional functions that are poorly understood. CRISPR/Cas9 technology was used to introduce biallelic mutations at selected sites of the ATM gene in human induced pluripotent stem cells (hiPSCs). This panel of hiPSCs with nonsense and missense mutations in ATM can help understand the molecular basis of A-T.


Assuntos
Ataxia Telangiectasia , Células-Tronco Pluripotentes Induzidas , Humanos , Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Edição de Genes , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , Proteínas de Ciclo Celular/genética
14.
Biomedicines ; 11(11)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001875

RESUMO

Renal cell carcinoma is a significant health burden worldwide, necessitating accurate and efficient diagnostic methods to guide treatment decisions. Traditional pathology practices have limitations, including interobserver variability and time-consuming evaluations. In recent years, digital pathology tools emerged as a promising solution to enhance the diagnosis and management of renal cancer. This review aims to provide a comprehensive overview of the current state and potential of digital pathology in the context of renal cell carcinoma. Through advanced image analysis algorithms, artificial intelligence (AI) technologies facilitate quantification of cellular and molecular markers, leading to improved accuracy and reproducibility in renal cancer diagnosis. Digital pathology platforms empower remote collaboration between pathologists and help with the creation of comprehensive databases for further research and machine learning applications. The integration of digital pathology tools with other diagnostic modalities, such as radiology and genomics, enables a novel multimodal characterization of different types of renal cell carcinoma. With continuous advancements and refinement, AI technologies are expected to play an integral role in diagnostics and clinical decision-making, improving patient outcomes. In this article, we explored the digital pathology instruments available for clear cell, papillary and chromophobe renal cancers from pathologist and data analyst perspectives.

15.
Polymers (Basel) ; 15(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37896364

RESUMO

The formation of a dense fibrous capsule around the foreign body and its contracture is the most common complication of biomaterial implantation. The aim of our research is to find out how the surface of the implant influences the inflammatory and fibrotic reactions in the surrounding tissues. We made three types of implants with a remote surface topography formed of polylactide granules with different diameters: large (100-200 µm), medium (56-100 µm) and small (1-56 µm). We placed these implants in skin pockets in the ears of six chinchilla rabbits. We explanted the implants on the 7th, 14th, 30th and 60th days and performed optical coherence tomography, and histological, immunohistochemical and morphometric studies. We examined 72 samples and compared the composition of immune cell infiltration, vascularization, the thickness of the peri-implant tissues, the severity of fibrotic processes and α-SMA expression in myofibroblasts. We analyzed the scattering coefficient of tissue layers on OCT scans. We found that implants made from large granules induced a milder inflammatory process and slower formation of a connective tissue capsule around the foreign body. Our results prove the importance of assessing the surface texture in order to avoid the formation of capsular contracture after implantation.

16.
Adv Colloid Interface Sci ; 321: 103020, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37871382

RESUMO

Carbon dots (CDs) are a recent addition to the nanocarbon family, encompassing both crystalline and amorphous phases. They have sparked significant research interest due to their unique electrical and optical properties, remarkable biocompatibility, outstanding mechanical characteristics, customizable surface chemistry, and negligible cytotoxicity. Their current applications are mainly limited to flexible photonic and biomedical devices, but they have also garnered attention for their potential use in intelligent packaging. The conversion of food waste into CDs further contributes to the concept of the circular economy. It provides a comprehensive overview of emerging green technologies, energy-saving reactions, and cost-effective starting materials involved in the synthesis of CDs. It also highlights the unique properties of biomass-derived CDs, focusing on their structural performance, cellular toxicity, and functional characteristics. The application of CDs in the food industry, including food packaging, is summarized in a concise manner. This paper sheds light on the current challenges and prospects of utilizing CDs in the packaging industry. It aims to provide researchers with a roadmap to tailor the properties of CDs to suit specific applications in the food industry, particularly in food packaging.


Assuntos
Pontos Quânticos , Eliminação de Resíduos , Embalagem de Alimentos , Alimentos , Carbono , Eletricidade
17.
Biomolecules ; 13(9)2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37759727

RESUMO

The analysis of the microvasculature and the assessment of angiogenesis have significant prognostic value in various diseases, including cancer. The search for invasion into the blood and lymphatic vessels and the assessment of angiogenesis are important aspects of oncological diagnosis. These features determine the prognosis and aggressiveness of the tumor. Traditional manual evaluation methods are time consuming and subject to inter-observer variability. Blood vessel detection is a perfect task for artificial intelligence, which is capable of rapid analyzing thousands of tissue structures in whole slide images. The development of computer vision solutions requires the segmentation of tissue regions, the extraction of features and the training of machine learning models. In this review, we focus on the methodologies employed by researchers to identify blood vessels and vascular invasion across a range of tumor localizations, including breast, lung, colon, brain, renal, pancreatic, gastric and oral cavity cancers. Contemporary models herald a new era of computational pathology in morphological diagnostics.


Assuntos
Inteligência Artificial , Neoplasias Bucais , Humanos , Oncologia , Microvasos , Aprendizado de Máquina
18.
Cancers (Basel) ; 15(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37627156

RESUMO

High-grade serous ovarian cancer (HGSOC) is responsible for the majority of gynecology cancer-related deaths. Patients in remission often relapse with more aggressive forms of disease within 2 years post-treatment. Alternative immuno-oncology (IO) strategies, such as immune checkpoint blockade (ICB) targeting the PD-(L)1 signaling axis, have proven inefficient so far. Our aim is to utilize epigenetic modulators to maximize the benefit of personalized IO combinations in ex vivo 3D patient-derived platforms and in vivo syngeneic models. Using patient-derived tumor ascites, we optimized an ex vivo 3D screening platform (PDOTS), which employs autologous immune cells and circulating ascites-derived tumor cells, to rapidly test personalized IO combinations. Most importantly, patient responses to platinum chemotherapy and poly-ADP ribose polymerase inhibitors in 3D platforms recapitulate clinical responses. Furthermore, similar to clinical trial results, responses to ICB in PDOTS tend to be low and positively correlated with the frequency of CD3+ immune cells and EPCAM+/PD-L1+ tumor cells. Thus, the greatest response observed with anti-PD-1/anti-PD-L1 immunotherapy alone is seen in patient-derived HGSOC ascites, which present with high levels of systemic CD3+ and PD-L1+ expression in immune and tumor cells, respectively. In addition, priming with epigenetic adjuvants greatly potentiates ICB in ex vivo 3D testing platforms and in vivo tumor models. We further find that epigenetic priming induces increased tumor secretion of several key cytokines known to augment T and NK cell activation and cytotoxicity, including IL-6, IP-10 (CXCL10), KC (CXCL1), and RANTES (CCL5). Moreover, epigenetic priming alone and in combination with ICB immunotherapy in patient-derived PDOTS induces rapid upregulation of CD69, a reliable early activation of immune markers in both CD4+ and CD8+ T cells. Consequently, this functional precision medicine approach could rapidly identify personalized therapeutic combinations able to potentiate ICB, which is a great advantage, especially given the current clinical difficulty of testing a high number of potential combinations in patients.

19.
Sci Rep ; 13(1): 13834, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620351

RESUMO

A combination of a high sediment input and intense bottom currents often leads to the formation of contourites (sediments deposited or significantly reworked by bottom currents). Both of these components are present in the Vema Fracture Zone valley which is the most important passageway for the distribution of the Antarctic Bottom Water from the West to the North-East of the Atlantic. However, no contourite drifts, moats or contourite channels have been found in this region in more than half a century of research. The prevailing sedimentation paradigm postulates that turbidity currents have predominantly governed sedimentation in this region during the Pleistocene. This work describes the first example of contourite depositional system identified in the Vema Fracture Zone. The discovery was made through detailed high-resolution sub-bottom profiling, as well as numerical modeling and direct measurements of bottom current velocities. Such systems are exceptionally uncommon in fracture zones. This study highlights the importance of further research of contourites along the Vema Fracture Zone based on modern concepts of contourite and mixed depositional systems. The work also emphasizes the need to reevaluate the impact of bottom currents on sedimentation in this region, and particularly in the narrow segments of the fracture zone valley.

20.
Cell Rep ; 42(7): 112751, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37405921

RESUMO

Hereditary leiomyomatosis and renal cell cancer (HLRCC) is a cancer syndrome caused by inactivating germline mutations in fumarate hydratase (FH) and subsequent accumulation of fumarate. Fumarate accumulation leads to profound epigenetic changes and the activation of an anti-oxidant response via nuclear translocation of the transcription factor NRF2. The extent to which chromatin remodeling shapes this anti-oxidant response is currently unknown. Here, we explored the effects of FH loss on the chromatin landscape to identify transcription factor networks involved in the remodeled chromatin landscape of FH-deficient cells. We identify FOXA2 as a key transcription factor that regulates anti-oxidant response genes and subsequent metabolic rewiring cooperating without direct interaction with the anti-oxidant regulator NRF2. The identification of FOXA2 as an anti-oxidant regulator provides additional insights into the molecular mechanisms behind cell responses to fumarate accumulation and potentially provides further avenues for therapeutic intervention for HLRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Leiomiomatose , Síndromes Neoplásicas Hereditárias , Neoplasias Cutâneas , Neoplasias Uterinas , Feminino , Humanos , Fumarato Hidratase/genética , Antioxidantes , Fator 2 Relacionado a NF-E2/genética , Leiomiomatose/genética , Neoplasias Uterinas/genética , Neoplasias Cutâneas/genética , Síndromes Neoplásicas Hereditárias/genética , Cromatina , Neoplasias Renais/genética , Carcinoma de Células Renais/genética , Fator 3-beta Nuclear de Hepatócito/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA